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The main purpose of this study is to investigate the thermal efficiency of a 
Two-Phase Closed Thermosyphon (TPCT).  For this purpose, initially, an 
experimental study was performed, then to predict the other experimental 
conditions ANN model which has used a wide range of thermal engineering 
systems was developed. A vertical copper pipe charged with different working 
fluids as pure water, ethanol, and ethylene glycol were used for TPCT. Impact 
of the various parameter such as heating power input, inclination angle, cooling 
water flow rate and working fluid type on the TPCT efficiency are examined. It 
is found that the increase in the inclination angle increased the TPCT efficiency 
while the increase in heating power input decreased efficiency. Regression 
analysis was applied to examine the performance of ANN between estimated 
and experimental data. The Mean Absolute Percentage Error (MAPE) was 
found to be less than 1.3 % for the training set and 3.1% for the test data set. 
The ANN predictions yield R2 in the range of 0.9998 for the training set and 
0.9989 for the test data set. The obtained results from the experimental study 
and ANN were found in good agreement, and it is also concluded that from the 
study the ANN is a useful tool to estimate such thermal engineering problems. 
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1.  Introduction 

TPCTs which are a superior heat transfer device is an important issue for applications in a wide range 
of thermal engineering systems (Gedik, 2016 [1]; Gedik et al., 2016 [2]; Andrzejczyk, 2019 [3]; 
Sarafraz et al., 2020 [4]). Thermosyphons consist of three different regions: i) evaporator (the working 
fluids absorb heat from outside), ii) condenser (the heat transferred to the external environment), and 
iii) is the adiabatic section where heat transfer does not occur. The schematic illustration and working 
principle of TPCT are given in Figure 1. The heat energy that is executed to the evaporator region of 
the TPCT causes the working fluid to vaporize. Using absorbed heat from the condenser region of the 
TPCT, working fluid that becomes to be saturated vapor condenses and turns back to the evaporator 
region of the device in various ways. To send the fluid, which is condensed in the condenser region, 
back to the evaporator region can benefit from gravity, centrifugal, magnetic, and electrostatic forces.  
To organize a working fluid cycle inside the TPCT, a wick made from suitable materials is placed 
inside the inner surface of the TPCT.  

In general, because the evaporator region is placed at the low position of the TPCT, the cycle can be 
provided easily by making use of gravity without needing any extra force. The most general ways to
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take the condensed fluid back to the evaporator region are gravity and capillary actions (Faghri, 1995 
[5]; Fadhl et al., 2013 [6]; Kerrigan et al. [7], Fadhl et al., 2015 [8]). 

 

Figure 1. Schematical illustration and working principle of TPCT. 

Many studies (Farsi et al., 2003 [9]; Kamyar et. al., 2013 [10]; Jafari et. al., 2016 [11];  Jafari et al., 
2017 [12]; Ma et al., 2017 [13]; Naresh & Balaji, 2018 [14]) have previously reported an increase in 
heat transfer via thermosyphon taking into account the type of working fluids (Huminic & Huminic 
2011[15]; Kannan et al., 2014 [16]) angle of the TPCT (Noie et al., 2007 [17]) filling ratio (Ong et al., 
1999 [18]; Park et al., 2002 [19]; Shabgard et al., 2014 [20])  of working fluid etc.  One of them was 
performed by Payakuruk et al., (2000) [21]. In their study heat transfer characteristics of TPCT were 
investigated from the point of view of various parameters configuration of inclination angle and 
working fluids. Fadhl et al. (2015) [8] investigated numerically TPCT by using the CFD method. Their 
CFD results showed close agreement with the previously published experimental results. Gedik et al., 
(2016) [2] have studied TPCT integrated with heat recovery system to investigate its thermal 
performance. They have used the R134a and R410A working fluids with an effectiveness of 35.6% 
and 57.7% respectively inside the TPCT. According to them, in heat recovery applications, the usage 
of a heat pipe bundle system is beneficial. Sözen et al., (2016) [22] experimentally investigated the fly 
ash effect on the thermal performance of TPCT. Three kinds of metal oxide nanoparticles suspended 
in water were used in the thermosyphon as a working fluid and its thermal performance was studied 
for various test configurations such as heating powers, coolant water flow rates, etc. They found that a 
meaningful decrease in thermal resistance of thermosyphon when used nanofluid containing fly-ash 
inside the thermosyphon.  

The ANN is a method that can be applied successfully in many engineering fields to expand and 
predict experimental results (Boostani et al., 2017 [23]). This method has many more advantages such 
as simplicity, high speed, nonlinear modeling when compared to classical methods (Kalogirou, 2001 
[24]; Kurt et al., 2006 [25]; Kurt &Kayfeci, 2009 [26]). It has several models as described by Sarle, 
(1994) [27].  In addition, it can be seen in many studies that ANN gives more accurate results than 
linear models (Chaloulakou, 2003 [28]) and it is used successfully in the examination of engineering 
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systems (Fichera & Pagano, 2002 [29]; Sanaye & Hajabdollahi, 2010 [30]; Caner et al., 2011[31]; 
Ceylan et al., 2014 [32]).  Akdağ et al., (2009) [33] studied ANN to predict the heat transfer in 
oscillating circular flow generated by a piston-cylinder mechanism. They found that a good agreement 
between experimental and ANN results; additionally, they concluded that ANN is a useful tool to 
model the heat transfer. Shanbedi et al. (2015) [34] have used the Adaptive Neuro-Fuzzy Inference 
System to predict the thermal performance of TPCT. Results obtained from their study showed that the 
studied model is susceptible and reliable to optimize TPCT performance. In order to predict the 
experimental results for the thermal performance of TPCT filled with nanofluids, the ANN model was 
used by Shanbedi et al., (2013) [35]. Komeilibirjandi et al., (2020) [36] used correlations and ANN 
model to forecast the thermal conductivity of CuO/water nanofluids. Filing ratio and different heat 
input effect on the thermosyphon performance was investigated by Sadrameli et al., (2020) [37]. It is 
found that the efficiency of TPCT at different levels of heat input was between 73 and 78%.  Heat 
transfer characteristics of copper-coated and uncoated wickless heat pipe (namely TPCT) filled with 
R134a working fluid have been experimentally studied by Senthilkumar et. al., (2020) [38]. They 
found that coated wickless heat pipe is more efficient than uncoated heat pipe for 10 kWm-2 and at 
inclination angle of TPCT 45°. 

Based on the above literature studies and according to the best of authors’ knowledge, although there 
are many papers on two-phase closed thermosyphon considered various operation conditions, far less 
work has been considered using ANN method for TPCT despite its reliability, accuracy in many 
engineering systems. Therefore, according to the authors, the study is considerable. For this reason; 
the motivation and objective of this study is to examine the thermal efficiency of TPCT utilizing ANN 
method evaluation.  For this purpose, careful experimental tests were performed taking into 
consideration various operation conditions such as inclination angle of TPCT, working fluids, heating 
power input and cooling flow rate. To predict the rest of experimental conditions, ANN model was 
developed. In ANN model, the backpropagation learning algorithm was used to be able to train the 
network. The obtained results from the study were plotted graphically and discussed in detail. 

2.  Methodology 
2.1. Experimental Study  

The schematic illustration of the experimental setup is given in Figure 2. A copper pipe has three 
regions as evaporator, adiabatic and condenser, power supply, electrical heater, flow meter, datalogger 
are the main components of the experimental setup.  Details of the experimental apparatus were 
explained clearly in Gedik, (2016) [2]. Briefly, a copper pipe which has an inner and outer diameter of 
18 and 19 mm respectively with a length of 100 mm was used as a thermosyphon. The working fluids 
were filled to cover one-third of the heat pipe volume (Jiao et al., 2008 [39]; Menlik et al., 2015 [40]). 
The applied heat energy to the evaporator region via electrical heater has been drawn by a cooling 
water circuit in the condenser region of TPCT. In the experiments, the distribution of TPCT surface 
temperature, inlet/outlet temperatures of the cooling water is measured for various heating power 
input, inclination angles and flow rates.  The governing parameters are the heating power inputs 
changing 200 to 600 W, heat pipe inclination angle changing 30 to 90°, cooling water flow rates 
changing 10 to 30 L/h and type of working fluid. 
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Figure 2. Schematic diagram of the experimental setup [1]. 

The thermal efficiency of the thermosyphon was calculated using the measurement data obtained from 
the experiments. The heat load drawn by the condenser region is calculated by the following equation. 

)( ,, iwowpwpwC TTCmTCmQ          (1) 

Experimental efficiency of the TPCT is calculated as follow: 

E

C

Q

Q



            (2) 

2.2. Artificial Neural Network (ANN) 

The connection between the inputs and outputs can be represented more easily for the networks with 
bias than non-bias (Kurt & Kayfeci 2009 [26]). The calculation of the weighted sum of the input 
components/parameters is computed with the help of the Eq.3 given below. 

   n
i iiijj bxwNET

1
          (3) 

The sigmoid function described in (Towards Data Science, 2019 [41]) is often used in machine 
learning algorithms, particularly in the testing of artificial neural networks, as a way of understanding 
the output of a node or “neuron”. With the aid of sigmoid function the output of the jth neuron can be 
expressed as: 

   j
jj kNET

NETfout

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exp1

1
        (4) 

The aim of the studied ANN model in this study is to estimate the thermal efficiency of TPCT depend 
on the fluid type, inclination angle, heating power and cooling flow rate. From the experimental 
measured and computed data were used the training of ANN model. For the training process, 
Backpropagation algorithm was used in this ANN model because of its popular and wide usage in 
many applications.  The BP learning algorithm having three layers (input, output and hidden) was used 
in feed-forward. MATLAB software was used for the ANN model.  The structure of ANN model is 
shown in Figure 3. In this structure, the type of working fluid, heating power, inclination angle and 
cooling water flow rate were used as four input variables. The efficiency of the TPCT was defined as 
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the output variable. An optimal number of neurons was tried to be found and nine neurons gave the 
best structure in the hidden layer. A total of 81 data measured in the experiments were used in the 
training and testing set of the ANN. 

 

Figure 3. ANN structure. 

In the proposed ANN model, the explicit formulation of efficiency (P) is achieved using the inputs, 
weights and normalization factors parameters. Trained ANN gives the all-necessary parameters. Inputs 
are multiplied by connection weights. Products and biases are summed, then transformed through a 
sigmoid function, (Eq.4) to produce an outcome with ease. In order to get the correct result from the 
formula proposed in this study, the normalization values given in Table 1 should be considered. The 
main purpose is to obtain the P in a functional form in terms of Ft, W, A, Q given as follows in Eq. 8-
17. 
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 (5) 
F1 = (0.7440 Ft +3.0693 W+3.2680 A-7.5662Q+2.7498)     (6) 
F2 = (16.9860 Ft-8.5599 W-0.3819 A-7.2432Q-6.1207)      (7) 
F3 = (0.0631 Ft+1.3277 W+0.7072  A-11.7203Q+8.7993)     (8) 
F4 = (14.8774  Ft-7.1054 W-0.5382 A -11.5731Q-3.5099)     (9) 

F5 = (-10.5419 Ft -9.7838 W+3.3311A+1.4977Q+7.0678)     (10) 
F6 = (3.0602Ft+5.1213 W-12.2349A-4.3206Q+9.9171)      (11) 
F7 = (20.8258Ft+7.8311W-1.1373 A+2.1602Q-6.3479)      (12) 
F8 = (13.6664Ft+1.2110 W-0.6318 A+0.6215Q-2.3536)     (13) 
F9 = (-5.4369Ft-1.5827 W+1.2731A -24.6166Q+17.4375)     (14) 

Functions F1, F2, F3, F4, F5, F6, F7, F8 and F9 were obtained by employing independent variables 
from Equations 8-17. P was achieved by using functions from F1 to F9 in Equation 8.  

Table 1. Normalization values of inputs and output 

Fluid type Heating power 
input 

Inclination angle Cooling water 
flow rate 

Efficiency of the 
TPCT 

(Ft) (W) (A) (Q) (P) 
4 800 100 40 1 
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RMS, SSE and R2 which can be expressed in Eqs (18-20) were considered for estimation of the 
network's performance and tj is the target value, oj is the output value, p is the sample size. Computed 
these statistical parameters were given in Table 2. 
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Table 2. Statistical parameters of the ANN 

Parameters Training Test 
MAPE (%) 1.31 3.06 
RMS 0.0087 0.0221 
SSE 0.0054 0.0049 
R2 0.9998 0.9989 
cov 0.0146 0.0344 

3.  Results and discussions 

The comparisons between real (target) and predicted (output) thermal efficiencies of TPCT are shown 
in Figure 4. A total of 71 data measured in the experiments were used in the training of the artificial 
neural network and the other 10 were randomly selected as test data. ANN training and test results are 
shown in Figure 4.  
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(a) (b) 
Figure 4. Set performances a) training b) test 

The results in Figure 4 show that the neural network is successful in learning the relationship between 
the output (thermal efficiency of TPCT) of various input parameters. Graphs of Figure 5 show the 
predicted thermal efficiency of TPCT obtained from ANN at varied values of input parameters such as 
heating power input, fluid type and cooling water flow rate.  
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Figure 5. Variations of predicted TPCT efficiency by heating power input at 30° inclination angle 

It is clear from the figure that when the heating power input has increased, thermal efficiency has 
decreased for all types of fluid and these decreases are much more with increasing cooling water flow 
rate.  

10 l/h 

20 l/h 

30 l/h 
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Figure 6. Variations of predicted TPCT efficiency by heating power input at 60° inclination angle. 
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In the case that the applied heating power is 100 W, the water is considered to be the best efficacious 
fluid for low cooling water flow rate and in high heating power, this situation was realized for ethanol 
working fluid.  

 

 

 

Figure 7. Variations of predicted TPCT efficiency by heating power input at 90° inclination angle. 
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30 l/h 

20 l/h 



Int. J. Thermal-Fluid Engineering and Modern Energetics 1 (2022) 19-33 www.tfeme-ba.com 
 

28 
 

When the graphs are examined, the increase in cooling water flow rate in the same heat load, 
generally, the efficiency of TPCT filled with water has decreased and the efficiency of TPCT filled 
with other working fluids (ethanol and ethylene glycol) has increased.  Figures 6 and 7 show the 
variations of TPCT efficiency for the 60º and 90º inclination angle respectively considering the 
various ANN input parameters. It was found that at low heat load and low cooling water flow rate, 
water is the most efficient working fluid for all inclination angles.  
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Figure 8. Comparison of efficiency values obtained from ANN model and experimental study 

For the situation of low heat load and high flow rate of the coolant ethylene glycol working fluid was 
found more efficient whereas ethanol is best at high heat load for all inclination angle. In the same 
values of heating power input and flow rate of coolant, ethanol and ethylene glycol showed similar 
properties as working fluids; those efficiency values for the 30° inclination angle were estimated at 
60% and 75%, respectively whereas it was predicted as 68% and 82%, 81% and 90% for 60° and 90° 
inclination angles respectively. Increasing inclination angle has caused to increase TPCT efficiency for 
all working fluid types. At low heating power input, water is more efficient, whereas ethanol is more 

200 W, 10 l/h 

200 W, 30 l/h 
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efficient at high heating power input. At the same heating power input, an increase in the flow rate of 
the cooling water decreased some efficiency values and increased others. This situation has been 
explained in Gedik, (2016) [2]. A 100% increase in the flow rate sometimes causes higher temperature 
differences up to 100% and consequently a tendency to increase or decrease the efficiency values of 
TPCT depending on the flow rate. Sözen et al. (2016) [22] indicated that efficiency values decreased 
as the flow rate increased.  Besides that, according to the results obtained, the highest temperature 
difference was obtained in the cooling water at the condenser zone for working fluid ethylene glycol at 
low heating power input and high cooling water flow rates. However, at higher heating power inputs, 
the efficiency of the TPCT, whose working fluid was ethanol, was greater. Experimental and ANN 
results of TPCT efficiency for different working fluids, cooling water flow rates, inclination angle at 
200 W heating power input are given in Figure 8.  It can be understood that the increase in the 
inclination angle causes an increase in the efficiency of the TPCT. For instance; the efficiency value of 
TPCT that had been about 75% at an inclination angle of 30° for water as a working fluid, has 
approximately been 80% and 93% at situations in which inclination angle had been 60° and 90° 
respectively.  A similar situation is also valid for other working fluids. Both in ANN and experimental 
study, maximum efficiency value was found when working fluid is water for the highest inclination 
angle at 10 L/h cooling water flow rate. 

 

Figure 9. The 3D plots of TPCT efficiency for water 

The results of the ANN and the experimental results are in good agreement with each other. Also; the 
increase in cooling water flow rate has changed the efficiency values of the working fluids. For 10 L/h 
cooling water flow rate, the water has performed the best efficiency; at high cooling water flow rate 
(30 L/h), on the other hand, ethylene glycol has performed a better efficiency. As the angle of 
inclination increases, the phase change event (condensation and evaporation) in the thermosyphon 
occurs faster because of gravity. For this reason, the efficiency of the TPCT at a 90° inclination angle 
in the vertical position was higher. Figure 9 is shown for water and a flow rate of 30 L/h for a better 
understanding of the effect of the heating power input and the inclination angle on the thermal 
efficiency of the TPCT. As can be understood from the three-dimensional surface graph, the efficiency 
of TPCT is a function of inclination angles. It is also an opposite function of the heating power input. 

4.  Conclusions 

An experimental study and ANN approach have been conducted in the present study to examine the 
thermal efficiency of TPCT under various parameters effect, i.e., (i) heating power input, (ii) 
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inclination angle, (iii) cooling water flow rate, and (iv) type of working fluids. The ANN model using 
BP learning algorithm was successfully used to predict the complex nonlinear relationship between the 
thermal efficiency and input variables of TPCT.  The data obtained from ANN were represented in 
graphs and discussed in detail. The concluding remarks are: 

 The comparisons between the predicted data and experimental data proved ANN model have 
the capability of recognizing the relationship between input and output events. Predicted 
thermal efficiency values were found to be in excellent agreement with the corresponding 
experimental data. 

 The increase in the inclination angle increased the TPCT efficiency while the increase in 
heating power input decreased efficiency. 

 For low cooling water flow rates (10 L/h ≤), water was more effective in terms of the thermal 
efficiency of TPCT, whereas for higher flow rates (30 L/h≥) ethylene glycol was a more 
effective working fluid. 

 ANN is a useful tool to predict the thermal efficiency of TPCT. The methodology proposed in 
this study can be used very easily for such kind of heat transfer application.  

Nomenclature 
bi  : bias 
cp   : specific heat [J/kgK] 
MAPE : mean absolute percentage error 
m   : mass flow rate (kg/s) 

NETj  : weighted sum of the jth neuron 
outj   : output of the jth neuron.  

CQ   : heat transfer rate of condenser (kW)  

EQ   : heat transfer rate of condenser (kW)  

RMS : root mean squared 
R2  : statistical coefficient 
SSE  : sum of squared error 
t  : target 
T  : temperature [K] 
wij   : weighted between the  jth neuron and the ith neuron.  
Xi   : input of the ith neuron.  

Subscripts 
o/out : outlet 
p  : pattern size 
P  : efficiency (ANN) 
in  : inlet 
Greek letters 
η  : efficiency (experimental) 
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